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ABSTRACT

g2 A

A closed form solution of the optimum control law is der-
ived utilizing the Pontryagin maximum principle. The desired value
of the input is plece-wise continuous. The derivation presented for
one discontinuity can be extended to any number of piece-wise dis-
continuities. The principle of dynamic programming holds, that is,
the system is optimum for the remalning time no matter what dis-
turbance has occurred in the past. The method is applicable to
linear constant coefficient systems oanny order.,

The application of the general method 1s shown by an example
in which the optimum control law for a nuclear reactor start-up is
determined, Compared to the method of state variables the closed
form solution given by the optimum control law has the advantage of
being less susceptible to random noise which may be present in the
instrumentation., A closed form solution of the control law for a

second order system is derived for any reference trajectory with

continuous second derivatives,




. INTRODUCTION

(1)%,(2) ,

Previous investilirztors have considz=red application
of the Pontryarin maximum principle to various specizlized cases
c¢f second order systems [or common error criterion. The applica-
tions were limited to establishing predetzrmined trajectories and
switching surfaces, and did not produce a control system which
could reduce the effects due to unpredicted external disturbances
such as noilse, The objective of this paper is to dermonstrate that
an cptimum feedback controller con be obtained for time invariant
linear systems by the Pontryagin maximum principle.

The optinmum control system will be defined as the control
system which minimizes the inteeral squared error from the oresent
time t to a final time T,. The orinciple of dynamlc program-
ming applies, that is, no matter what the control has been prior to
the present time, the control will be optimal for al) future time up
to the final time T,, The desired input M(o) 1s plece-wise contin-
uous as shown in Figure 1. The subscripts a and b refer to desirec

inputs ané outputs for two different time intervals. Thus,
e(t) = [T 1E02,(e) = a(e) 32 + vI¥ (e) = m(a)]?] do
t a a g

v [T 100, (0) = 2()32 + s[M,(¢) = m(e)12] a0 (1)
1

where: g(t) = error criterion,

¥Superscript uwmbers in parcnthezis refer to references at the
end or the paper,



s(a) = outnut simnal

O(c) = cesired sipnal,
m(e) = inout sicnal,

M(g) = desir »ut, which 15 niece-wise continuous,
see T

e

o = durmy Ctime variable renrzsenting future time,

t = prasent tire,
T, = termination tirme of the control systen,

£ ,v = weirhtin~ factors.
Linear constant cozfriclent systems are deseribed by the

following eguation,

n n~l i

@ L a7 n
n afa) . _ ) 3y __a§il + (o) (2)
ode” i=o do

vhere ai(i=0,l,2, «ee N) are constants and by definition,

.0
g

~

There are n boundarv cond¢itions for the values of g and 1its
derivatives at the »reseant time ¢ = t, The final value of the
output is not fixed, but the natural boundarv condltisng will be
imposed.

QPTIMU!! CCITROL *.n'7

Avi auxilioary time variable w will be defined zuch that
p  1s measurzd from the nresent tire t as shown in Tigure 1,
thus,

o =t + yu (3)



N

The time t will be treated as a parameter. Equation (2) becomes,

d%q (¢ n-1 gt £
A -z e ) ) ()

and the error criterion becomes,

u,: —t - -
e(t) = [ “E1Qp (Eeu)-a(ta)]12 + V{M(t4a)-m(t4u)]2 Sap
u,::
w=Ta-t - 3
+ % . LEIQp (T4 )-a(tw)1® + V(M (ton)-n(t4)]12f au
=49~ -

(5)

Converting to the Pontryagin form we define,
u(t;n) = m(t+u)
x1(tgu) = q(tw)

dx, (t;u)
i 3
xi+1(t3u) =

T i = 1,2, es (n—l)

*nap (F30) = TZ:Z {E[Qa(t+7)‘Q(t+T)]2 + VM (t+7)-1(t47)] 2% ar

) (6)
+ ? {s[Qb(t+T)—q(t+T)]2 + V[Mb(t+1)—m(t+7)]2j'd7
T=T3 -t
By successive differentilation,
i
d %y (ts0)
= X. (t;u,) i'—'-'l,g, e v e n"l
i 1
du d1+(t )
aPxy () xnda’u (7)
n
dp

With BEquations (6) and (7), Equaticns (4) and (5) become, the

system of first order equations,




dxi(t;u)
‘_"-'a‘r" e x1+l(t;¥1) = fi 1 = 1,2, e e e (n - l)
dx_(t;u) n-1
n =17 _ . . ) -
—F - o L izo “ixi+l(t’u) + u(t;u)] £

(8)
dx i
n+éu i») t[Q(t+u

R

- x1{t;w) 1% + v[M(e+u) -~ ule;m) 32 = £ 4

where : Q = Qa & M

i
s
- N

Y if vt <« Ty

Q = Qb & M Mb if Ty <t < Ty,

The optimum system is defined as the system for which,

n+l
S(t)y = ) ¢

e

(t3u =Ty = t) (9)

1

where: c, =0 forl #n+ 1 and c =1,

i n+l
is a minimum with respect to u(t;u). The Hamiltonian, given in
Appendix A, is,
n+l
H = _2 oy (E5u) £ (10)
i=1

where p,(t;u) is the auxiliary variable. From Equations (8),

nfl (t3u) (t3u) Ppltiw) [ nil (tiu)tultsu)]
H = R tou b tiu 4 ———— - a.x t:u)tu t'u
gLy F1TUMIRLeRY a MU R £ DA ;

(11)
+oo_ (b JELA(ER=xq (630012 + v DI(t+w) = ult;u)12)

For S(t) to be a minimum, H nust be a maximum, For the unsatu-

rated case,

. D, (E5u)
3uF T 0% Ta T m 2vppy (B3 DIER) — uF(E5u)] (12)

n



or
1 ?n(tEH)

uf(tzu) = M(t+y) -
) 2v3, Opa1(t;u)

(13)

where the asteris% cdenotes thz optirum condition.

DIPFEPENTIAL EOUATIONS TOP THL AUXILTARY VIRIA3LTS

The ~revious section cesveloned the optimum control law
in terms of auxilizry varisbles. In order to comnlete the ceri-
vation of th2 ontimurm ecntrol law, it 1s necessary to devalor the
differential =2cuations for the auxilisrv vorisbles. Trom Lguation

(A-5) of APPEVDIX &,

emy{tsu) _ %o

dp’ = .a—n- pn(tﬂ‘) + EEf)n+l(t;ﬂ) [(S(o+n) - x3(t:u)]
dpiltsh) _ Zi-1 .y (t: Ve o

du = ar pn( SH - pi_l )u) - ’3 eve 1

(14)
ap, o {tsu) -
Gu )
From the last Taquation of (14), pn+1(t;u) is not a
function of u, but ray be an arvitrzrv function of the narameter
t, nn+l(t;u) = f(t), such that the end noint condition, Eguation
(A=U) 1s satisfled for 211 t. Tor Eguation (A=U) to be satisfied
for 211 ¢, pnyl(t;u) must be constant. With Chel = 1 from

Equation (9) we have,

pﬁ+l(t:u) = '1 (15)



th

Differentiating the 1°° Zquation of (1#) i-1 times rives,

i i.1 -1
d7py(tsn) 2y, d p (tsu) & Tpy_;(t5u)

- ———— - . (16)
dui an dui 1l dul°1

Differentiatin- the(i-l)th equation 1-2 times, and substituting

into (16),
dipi(t;u) _ ag_y dl'lpn(t;u) 2 5 di-zpn(t;u) . éi"pi_zft;u)
dui &, dui-l a, dui-Z du1--2
(17
The recursion formula leads to,
<0 . n-1 Jn-1 .
< pn(t’u) = Y (-1)i+1 ey © pn(t’")
au? i=1 2. dun—i
; 18
n+1$ 2o b (5
+ (=1)777 5= ppa(tsu) = 28 [Q(t4u) - xp(t5u) ]y
(! J
or
n-1i
n n a , a o (t;u)
xi(tu) = (o) + L3 7 (it o=l i (19)
i=0 n du

From the definition of x;(t;u) and u(t;u),Fquation (4) is,

J
d (tsu)
o —=E L e (20)
o J du-

it~

j

Substituting Eguation (19) into (20) and using (13) and (13),

(21)

1
duj > 4=0 &, dun"':!-':L J

v n'r'j"i .
% aj%dja(:+u) » D7 ? (-1)it1 21 A o, (t;u) \l
3=0 :

2va,

.
= M(t+p) + 5= Dn(t;u)



The desired innput and output should in general satisfy
the original systern differentisl equation. This insures that
mininmization of the error criterion is compatible with the system
dynamics, If the original system differentizl eauation is not
satisfied by the desired input and output, it is not possible to

reduce the error criterion to zero. WYWith this recuirement,

n 3
! ey QJQQ%JQ—-= (t+n) (22)
j=0 du

and Equation (21) becores,

n oo ™=t (t5u)
1+1 n,(E5u) . .
JEO 120 (-1 % fn-i auiti-i = (-1)" w?p (t5u) (23)

where w? = £/v,
All the odd derivatives of pn(t;u) ars zero in Equation

(23). For examnle, the equation for a first order system is,

du? a2 1?1(t;u) = 0 (24)

d%p;(tsu) [ag + w?
 §

and for a second order system,

1
4 . a ", 2 2, . 2 2
d%p,(t;u) +{:2 E% - (%i)_J d°pa(tsu) [ g tu j pa(tsu) = 0 (25)

+
du" du? L ag

Fquation (23) is of order 2n., There are n boundary
condltions at each present time for the values of x;. The remain-
ing n boundary conditions are from the transversality conditions
for the case with natural boundary conditions, which are expressed

in terms of the adjoint variables by ZTquation (A-4),



SOLUTIONS WITH DESIRED INPUT PIECE-WISE CONTINUOUS

As zn example, the start-up and regulation of a nuclear
reactor is given by Eguation (C-5) in APPENDIX C as a special case
of Equation (2) with n = 1., Tor the nuclear reactor, a, = 0,
ay = 1 and the desired input and output are given by,

Q,(t)
Ma(t)

i

at Qb (t) = aTy A
% 0 <t <Ty Ty <t < Ty (26)

There is a discontinuity of the desired input M at t = Ty, there-
fore M(t) is piece-wise eontinuous. The physical significance
of this desired program is discussed in APPENDIX C.

For the time region T; < ¢t < Ty the solution to Eguation
(24) 1is,

P1(t;u) = A cosh(wy) + By sinh(wu) (27)
where Ab and Bb are arbitrary constants to be determined. Trom

Equations (A=-4) and (9) one natural boundary condition, which

applies to the free terminal point problem, is,

pi(tsu =T =t) = =2¢; =0 (28)
which requires,
A, = - B tanhlw(T,-t)] (29)
or,
pi(t;u) = By {sinh(mu) - tanh[w(Tp-t)] cosh(mu)k (30)
substituting Equation (30) into (19) with n = 1,
x1(t3n) = Q (t+u) + -;Eg °2§2,§‘§$§;(f33)] (31)
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Using the equivalence between x;(t:;u) and g(t+u) expressed by

Equation (6), Equation (31) with (3) becomes,

B
_ b w coshlw(Ty=0)]
a(e) = Qo) + 5= ¢ oeRTa(T, <t )] (32)

The constant Bb is evaluated by requirineg ¢(o) to equal the meas-

ured value q¥(t) at ¢ = t,
By = = 2 = [3 () = a*¥(t)] (33)

Substituting Equations (30) and (33) into (13) with the change in
varizbles given by (3) and (C€),

m* (o) = M,() = w[Q,(t) = a¥(t)] {sinnluo-t)]

. 5 (34)
- tanh{uw(T,-t) ] cosh(m(c—t)]j
and in particular at the present time o = ¢,
m#(t) = 1 () + o[Q (t) = q*(t)] tanhlw(T,-t)] (35)
Ty <t < T
The equivalent expression for m*(t) in the first time interval
t < T, is derived in APPINDIX B,
With the desired input and outnut given by Equations
(26), the control laws for the two time intervals become,
m*(t) = wlaT)~q%¥(t)] tannl{w(T,-t)] Ty <t < T, (36)
m#(t) = a{l - cosh[uw(T,-Ty)} Sech[m(Tg-t)’}z
(37)

+ wlat - q*¥(t)] tanh[w(Ty~t)] t < Ty




11
Equations (36) and (37) are identical to the results

previously obtained by the authors 3 , using the methods of
calculus of variations and dynamic programming.

RANDOM NOISE CONSIDERATIONS

The optimum control law given by Equations (36) and
(37) can be implemented as shown by the block diagram in
Figure 2. Random noise,(u) K (t), may be introduced into
the feedback signal, kq(t), by the instrumentation such as
the neutron detectors. In this section, the amount of err-
or introduced into the optimum control system shown in Fig-
ure 2 will be compared to the amount of error introduced in-
to a typical state variable switching system shown in Fig-
ure 3.

The actual system output, ky(t), is related to the
measured system output as follows,

ka(t) = ¥y(t) + ¥n(t) (38)
NWAA

The average random noise is assumed to be zero, kn(t)—-) 0.
The low pass filter characteristic of the process causes
all actual system output records to approach a single val-
ue, y(t), i.e.,

ky(t) » y(t). (39)

The actual output approaches the average measured

system output,
LAWY

yit) - falt) = x; (¢) (40)

where the variable xl(t) may be considered to be determin-
istic for
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the optimization precblem. The variable kq(t) is resevved fopr thu=
randor prneess.,

The Tormulation of the optimum control lsw changes very
little for this case. In Tquaticns (4) and (5) the quantity

BN e

g(t+u) becomes kq(t+u) where,

TN TN e L P
N

“q(t+u) = Fy(sen) + Fn(t+y) = x,(t50) (41)

which i~ 1dentical to the sccond line of Ecuation (6) if c(t+u)

becomes ”};;v; It can be proved that the prrevious analysis holds

also for this particular (though common) type of random process.
The error will be defined as the diiferencc between the

desired system output and the actual system output,

—

ot - ky(t) for t < T,
) (42)
e(t) Camy - y(t) for T <t <= Ty
i
~

Thz autocorrelation function of the random noise is not

zero, thus, EA;ZE;EE 7 E”ZYZ;Nw From Fizure 2 and Eguations (36)
and (37),
V()1 - a = ple)[at-"y(t)-Fn(:)] - a :‘:22[[:((222:;)1% (432)
for t < Ty, and

%F [ky(t)] b(t) ot~ Y(t)-kn(t)] (43b)

for Ty <t < Ty, where b(t) = otanh{w(T,~t)]. Because only the
effect of the noilse is under cousideration, the last term in

Equation (43a) may be drovp which with Eguations (42) leads




13
.to the followinr result,
L Fee)] + p(6)[Me(£)] = b(8)[*n(t)] (44)

The solution of Equation (L44) in inteegral form 18,(5)

k
Ke(6) = Ke(0an(6) + (o) /7 M o (45)

where,

n(t) = expl - J¥ b(r)ar]
(o)

If the output signal and nolsc are not correlated, the

(%)

mean-squared value of e(T,)is given by,

T4e(T,) 12 = [Xe(0)12 n2(T,)

m (u6)
+ n2(Ty) 1;2 %-((%)7 da ]iz 3;7(-2-%- v, (a,B)ds

nn

where Ynn(“’s) is the autocorrzlation function of the noise., When
the random process is stationary, the autocorrelation function

becomes ynn(u-B).

For most of the operation of the optimum control system,
w(T,~t) will be large, therefore tanh[w(T,-t)] will be approxi-
mately unity except near the nelzghborhood of ¢t = T,. Thus the
transfer function from Equation (44) becomes,

e(s) . W
kn(s) s+w
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For a stationary process, 2 typlcal autocorrelation function

for the noisc may be given as,

(47)

where K and ¢ are constants., The zutocorrelation function of the
output, yee(r), is found from the Weiner-Khinchin(u) and the input-

output relations tc be,

2
v, (1) = %%%ET [ % omtltl % e-vltly (48)

and the mean-square error is evaluated by letting t equal zero,

PaRa Y N NPV SO N Y

Yoo (t=0) = [Me(T)12 = & (49)

Both w and ¢ are positive, therefore the mean-square error 1is
less than K,

For the state variable switching system, kq(t) is compared
to Q(T,), and the switch 1s positioned off when the state variable

¥a(t) equals the desired output Q(Tz). Iy Firurse 3 the error becomes,
ke(T,) = Q(Ty) - ¥y(T) = [Q(T)-¥q(T2)] = Fn(Ty) (50)

and the mean-square error is,
f\l/{w P
[Te(T2)1%2 = [n(Ty) ]2 : (51)
With the autocorrelation function of Equation (47), the mean-square
error 1is,
rk 2 . =0) =
[“e(T2)12 = v, (1=0) = K (52)
For this case, the mean-square error is always less for the optimum

control system then for the state variable switching system.
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For unit white noise, the autocdorrelation function is

given by
’ Y (0=8) = §(a=8) (53)

When the 1initial error 1s zero, substitution of Equation (53) into
(46) yields,

PSP

[e(T2)])2 - yee(r=3) = % tanh3(wT,) (54)

Because the hyperbolic tangent never exceeds unity, the

mean-square error has an upper bound equal to one third of the
square root of the ratio of the output error weighting factor to the
input error weighting factor. For comparison, the mean-square error
in the state variable switching system with white noise 1s unbounded

for all w,

SECOND ORDER SYSTEM

The second order system may be given as,

29 . n(t) (55)
dat

The optimum control law for this system is derived in APPENDIX D

and is,
n¥(t) = M(t) + p3(t)[Q(t)-qg¥%(t)] (56)
+ p ()52 - 335
where: va(E) = u sin2z+tanh2zcos?z

1 + sech?zcos?z ?

— tanhz-sech?z cosz sinz
v (t) =+ 2w
* /J 1 + sech?z cos?z ’

N
[}
o

(T-t) and T 1s the terminal time,
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The desired output and input relation is,

o2 = m(t) (57)

If the second derivative of the reference trajectory Q(t)
exlsts everywhere except at a few isolated points, then
the reference input M(t) is piece-wise continuous and
can be determined. Thus the control law given by Equation
(56) with an unspecified continuous M(t) is very general.
The analysis may also be extended to the case where M(t)
is plece-wise continuous.

DISCUSSION

The optimization problem in which the desired input
is pilece-wise continuous and the system 1is described by a
linear constant coefficient system of differential equat-
ions has been shown to be solvable as a closed form con-
trol law.

The general result was applied to the simplified nu-
clear reactor kinetics equations with a specialized piece-
wise continuous desired input. The results are identical
with those obtained previously using the methods of calcu-
lus of variations and dynamic programming.

The closed form optimum control system is superior
to the state variable switching system in the following
particulars:

a) lhen random noise is added to the output, the optimum
control system tends to have a smaller mean-square error
than the state variable switching system.



(b)

(c)

17

For nuclcar recket contrcl, Jdu: to th2 inertia of the control
rols, abrunt chenr:3 in position roguired by the state variable
switchins system, ar. nhysically imnossible, The continuous
closed form optimum control system lesads to a more accurate
ohysical representation of the control rods.

The ontimum control appears to have greatest

notential in the fileld of nuclear prron21llad rockets. For this
annlication, noise introcduced into the output will affect the
rocket thrust. :loise in the state variable switchiig system
may cause switching zt 2 time 2ifferent from orizinally sched-
uled and mav comnletely chanze the tirust »nrogram. The closed
form orntimum control system will tend to return to the original
thrust »rorram at the right tire while the noise subsides.

£s 1llustrated by the second ordar system, the ontimum

control law is quite ceneral with reoesrd to the rzfercncs trajectory.

This 1is advantarsous in that the ‘derivation of the time varying

gains required in the feadbacks i3 indesendent of the reference

trajectory ir the cosiraé inrut is continvous,
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APPENDIX A

(6),(7)

Pontryzgin Maximum Principle

A system operates between time w=0 and y=Tp-t. The

system is described by a set of differential equations,

dxi(t;u)
an = fi(X]_,XZ,uooxJoonxn,xn+l’ ul,uz...uk...ur,u) (a-1)

xi(t;O) = xi(t) 1=1,2,...n,n+l

where xi(t;u) are state variables, t 1s treated as a parameter and
u, are control variables, The problem is to minimize,
n:l
S(t) = [ cyx (t;u=Ty=t) (A=2)

with respect to the control variables. Constraints may exist on the
control variables, U(tj3u)eU, where U 1s the admissible class of
control functions in r space, and u(t;u) is the vector control
function with components uk(t;u).

An auxiliary variable pi(t;u) is defined,

dp, (£35u) n+l 331 (A=3)

" - 321 pj(t;u) 5%y
The free terminal condition or natural boundary conditions are,
pi(t;ust-t) = -y 1 =1,2,se0en,n+l, (A=U4)
A Hamiltonian is defined,

n+l
H{X(t;u),ultsu),ul = 121 py (t3u) £y [X(E5u),U(t5u) 0] (A-5)
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A sufficicnt condition for a minimum of & 4is that H be
maximized with respect to the control vector at all times.,

The sets of differentizl equations for the system and for
the auxiliary variables are related to H by,

dax, (t35u) _ oH oo dpi(t;u)a _ aE (3-6)
du 3y ‘ du axy

APPENDIX B

Ootimum Control Law for First Order Systems

The first plece of the pilcce-wise contirucus input solution
(prior to time T;) is given by the solution to Equation (24),
pi(t;u) = A, cosh(wu) + B, sinh(wu) t < Ty (B-1)
Substituting Equation (B-l) into (19) with n = 1 gives,

x1(t;u) = Q (t+u) + %E-[Aa sinh(wu) + B, cosh(uu)] (B=2)

With the equivalence between x;3(tu) and q(t+y) expressed by Equa=~

tion (6), (B-2) with (3) becomes,

* 4 ‘—n— 1 - - -
q¥(o) = Q (o) + 5% {Aa sinnfw(o=t)] + B, coshlu(o t)]E (B-3)
The constant Ba is evaluated by requiring q(c) to be equal to the

measured value q¥*(t) a2t ¢ = ¢,

_ 2
B, = - 2= [Q,(t)-q*(t)] (B-4)
and,
A
a*(e) = Q,(¢) + 3> 7 sinhlu(o-t)] (B-5)

-[a,(t)=a*(t) ] coshlu(o=t)]
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The last two boundary condltions arc that the output signal and its
derivative be continuous at time T;. ILguating Equations (32) and
(B~5), and also zquating thelr derivatives at o=T; and eliminating

Bb to solve for Aa gives,

A, ) ide(c) dQ,, (o) !
= - - - 0 -
53 u2¢2,( do 0=T, ~do o=Ty w['a(Tl) Qb(Tl)]e
(B=6)
+ 19, (£)-a%(t) w1 |
where: 8 = tanh{w(T,=T)]
1 = w {sinh[u(T1-£)] + ecosh[m(Tl-t)]S
v2 = coshlw(T)-t)] + 6sinh{w(T;=-t)]
Substituting Equation (B-4) into (B=-1l) gives,
p1(tiu) = - 25 [0 (£)-q*(t)] sinn(ww) + A_ cosh(uw)  (B=T)

Substituting Equations (B-6) and (B-7) into (13) with n=1, using

(15) .and with the change in varilables given by (3) and (6), at o=t,

. de(O) aq, (o) l
do

1
* = ——
m*(t)=M, (t) + V%

- wo[Q,(T1)~-Q, (T1)] (B-8)
o=T, c=Ty

) t < T,
+ [Qy(£)-a*(t) vy 7

APPENDIX C

Nuclear BReactor Kinetics

The one delay group recactor kinetles equations for a nu-

clear reactor which is controlled by a black absorber are given

oy, (8)

d¢ _ LK=8 _
3% = ¢ + Ac (C=1)



%—g.:%¢— AC (C-z)
where: ¢ = spatially independent neutron flux,

¢ = equivalent concentration of precursors for the one
dclay group case,

AK = reactivity,

g = fraction of total number of fission neutrons which are
delayed,

L]
]

ncutron generation time, the average time before one
neutron generates one prompt ncutron or one precursor,

X = equivalent decay constant for the one delay group case,
For reactivity less than one dollar %@ ray be neglected in
Equation (C-1), sce for example Smets(g). With this approximation,

elimination of ¢ between Equations (C-1) and (C-2) gives,

ax 1 do _ _o -
at = (T-pndt ~ I-p (c-3)
where = dx .1 4
p = AK/B and 3t s 3% .

Defining q as a function of n and p,

qQ = % zn[%%f%%%;g] (C=U)

where Ps and ¢o are reference values of p and ¢. Differentiating

Equation (C-4) and referring to the dcfinition of %%, Zquation (C=3)

may be written,

dq _
F=m (C=5)
where m= P .
T"‘p

A common rasctor start-up scaquence 1s as follows: the power

is constant at a low level prior to time o0 =0, At ¢ = 0 1t 1s

desired to incrcase the power at 2 constant period (¢/%%) until a
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desired power level is reached and thereafter maintain the power
constant, The dcsired response for this start-up program is similar

to Figure 1.

Qa(o) = ag 0 0 < Ty

(C-6)
Q,(0) = aTy Ty so < T,

where T; 1s a fixed intermediate time and "a" is a constant, Con-
sistent with the fact that the desired input and output will satisfy
the differentlal equation, the desired inputs are picce-wise continu-
ous, ¥ (o) = a 0 <0 <Dy

(c-7)
Mb(0)=0 Ty <0 < T

The pilece-wise desired input has a physical interpretation
in terms of the control rod position. When the desired output is
constant reactor period, the desired position of the control rods 1is
that position which results in constant positive reactivity. When
the desired output is constant power level, the desired position of

the control rods is for zero reactivity,

APPENDIX D

Optimum Control Law for Second Crder Systems

The specialized second order system (n=2) which represents
the attitude control problem‘2%) is Equation (2) with a, = a3 =0

and a, = 1, Equation (25) becomes,

d%p,(t;u)

—r + w? py(tzu) =0 (D=1)




Y
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The solution is,
po(t;u) = A coshB8; cos8; + B coshB8; sing,

(D-2)
+ C sinhB; cosB; + D sinhB; sing,

where A,B,C and D are constants, and 8; = N/%? He
From Equations (A-4) and (9) two boundary conditions are,
p1{t;u=T=t) = py(t;u=T=t) = 0 (D=-3)
where T 1s the time 2t which control is to terminate., The success-

ive auxiliary variables are related by Equation (14),

dp,(tiu) '
Prltiny = —Liazé- (D-4)

The two boundary conditions give the relations,
A+ B tan z + C tanh 2z + D tanh 2 tan z = 0 (D=5)

and
(A+D)tanh z + (D=A)tan 2z (D-6)
+ (B=C)tanh z tan z + B4C = 0

-
where z = '\/g (T-t). ,

From Equation (19) with n=2, and the definition of g(t+u)=
x3{t;u) there results,

- . ) ‘
q(t+u) =‘Q(t+u) - %E_ a p;(‘:,u) S
u

Substituting Equation (D-2) into (D-7) gives,

a(t+n) = Q(t+u) + 52 | A sinhs; sing, | (D-8)
: ' - B sinhg; cosg;
+ C coshBj sing,
| = D coshgy cosB8p |

The remaining two boundary conditions are that the output and its

derivative are known at the present time ¢,



q(e)] = q¥*(t)
o=t
| (D-9)
dg(a) da*(t)
Aérclt = S

The optimum control law 1s obtained from Equation (13)
(with n=2) at the present time o=t, which 1is equivalent to u = 17 0.
Substituting Equation (D=2) into (13) and the definition of m(t+u) =

u(t;u) gives,

m¥(t) = M(t) +

%)

v (D-10)
Equation (D-8) with (3) is used to evaluate (D-9) glving,

D= 2% [o(t)-q*(t)]

(D=11)
32
B-Cc = £(2)/ 1R - &5 (D-12)

By adding and subtracting C to Equation (D-6), C czn be
solved in terms of A,D, and (B-C). Adding and subtracting C tan z
to Equation (D-5) gives a relaticnship between A,B-C,C and D. By
substituting the expression for € from the modirfiead Equation (D=-6)

and using trigonometric identities, the following result is obtained,

A = p tanhlz¥tanZz o o tanhzsec?z-sech2ztanz
sech?z+cec?z sech?z+sec?z

(D=13)

The optimum control law, obtailnesd by substituting Equations (D-11),
(D-12) and (D-13) into (D-10) is given 2s Equaticn (56.).
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